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Abstract 

Observations of weather phenomenon by polarimetric pulsed-Doppler weather radars are employed worldwide 

o monitor impending severe storms, fash-foods, and other weather related public hazards. The basis for processing 

eceived meteorological signals from pulsed-radar waveforms relies on stochastic processes where the accurate 

stimation of radar variables from received signals in additive white noise is essential for meaningful interpretation of 

eather phenomena and algorithm-derived products. For polarimetric weather radars, these estimates are calculated 

rom signal correlations in time and across the horizontal and vertical polarization channels. Conventional estimators 

nly use 1 or 2 signal correlation time-lags and may not utilize all the available information intrinsic in the received 

ignals. Weather-variable estimates could beneft from the use of all intrinsic characteristics in the received data; 

ccordingly, more complex estimators use multiple lags to extract additional information. However, not all estimates 

re improved by the use of more lags; in fact, improvement in estimates depends on signal characteristics and requires 

hat the additional correlation lags provide new information. In this article, we derive and examine general multi-lag 

stimators for refectivity, differential refectivity, polarimetric cross-correlation coeffcient, and Doppler spectrum 

idth. We compare the performance of these proposed estimators against conventional estimators using Monte-Carlo 

imulations on different meteorological signal characteristics to fnd estimators that can improve the quality of certain 

adar-variable estimates. 
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Generalized Multi-Lag Estimators (GMLE) for 

Polarimetric Weather Radar Observations 

I. INTRODUCTION 

The Weather Surveillance Radar – 1988 Doppler (WSR-88D) radars is constantly undergoing improvements to 

maintain its viability and relevance to better support National Weather Service (NWS), Federal Aviation Administra-

tion (FAA), and Department of Defense (DoD) Air Force forecast and warning missions. The last major milestones 

in the NEXRAD program included the dual-polarization upgrade completed in June 2013 [1]. It enhanced the 

observing capabilities of the radar and provided a set of new radar variables that have proven to be of signifcant 

help in the interpretation of weather data in support of the NWS mission [2]. The polarimetric variables provide 

critical information regarding shape and nature of the hydrometeors. This information not only enhances human 

interpretation and understanding of weather phenomena, but it allows for the development of automatic algorithms 

that produce products supporting the NWS forecasters [3]. 

In the late 1960s through the 1980s, prior to the transition of the NEXRAD network of weather radars from 

the WSR-57 to the WSR-88D, researchers began investigating the use of time domain estimators (often referred to 

as pulse-pair or covariance estimators) (e.g., [4–8]) to replace the classical spectral moment estimators (see [8, 9] 

for a review of classical estimators) to obtain Doppler moment (mean velocity and spectrum width) information. 

From a practical side, the time domain estimators provide a lower computational load with superior quality over 

the classical spectral moment estimators [5]. Most of the early estimators utilized two lags of the autocorrelation; 

however, researchers [10, 11] realized that incorporating higher lags into the estimators improved estimates at lower 

signal-to-noise (SNR). In principle, optimum estimates require estimates at all lags of the autocorrelation [12]; 

however, depending on signal statistics, a few lags may provide optimal estimates [8]. 

Renewed research interest in estimators for spectral moments and polarimetric-variables – differential refectivity 

(ZDR), differential phase (ϕDP), and cross-correlation coeffcient (ρhv) – was stimulated by dual-channel weather 

radars; however, since the dual-polarization upgrade on the WSR-88D network, little improvement in spectral-

moment and polarimetric-variable estimators has been implemented for operational use. Researchers suggested new 

estimators [13–16] that may reduce the bias and standard deviation of estimates at low SNR. For example, the lag-1 

ZDR estimator proposed by Melnikov and Zrnić [13] is free from the infuence of noise and are therefore more 

robust at lower SNRs. More recently, [17] proposed Generalized Multi-Lag Estimators (GMLE) that consolidate 

previous estimators and suggests new estimators for spectral-moment and polarimetric-variable estimates. In this 

generalized approach, GMLE not only utilize estimates from higher autocorrelation lags (to reduce the infuence 

of noise), but can also include the lag-0 autocorrelation and cross-correlation estimates. Unlike previous research 

efforts which assume that noise contamination in the zeroth lag of the autocorrelation function can bias estimates, 

this work does not. When the lag-0 autocorrelation is used, GMLE relies on a suffciently accurate noise estimation 
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technique (e.g., [18]) to remove the noise from the zeroth-lag signal and uses this essential information, along with 

higher-lag correlation estimates, to improve the accuracy and precision of radar-variable estimates. 

The development of the multi-lag estimators assumes a Gaussian distribution of weather radar returns. The model 

enables closed-form solutions and eases computational complexity permitting the extraction of copious amounts 

of time-critical weather information. As reported by Janssen and van der Speck [19], weather radar returns ft the 

Gaussian model to a high degree (75%). A more recent study [20] used the same analysis as [19] to locate tornado 

spectral signatures in a tornadic supercell event and found similar results (70% Gaussian like). However, they did 

observe spectra with dual peaks, fat tops, and wide skirts presumably from wind shear. In a follow-on study, Yu et 

al. [21] suggested six moments of a dual-Gaussian model better represented those observed non-Gaussian spectra. 

Modern weather radar signal processing successfully uses a bi-Gaussian spectrum model to recover weather signals 

contaminated by ground clutter [22–26]. Such clutter mitigation techniques require a piori knowledge of one of the 

Gaussian spectra (i.e, ground clutter has near-zero velocity) to recover the weather signal statistics. No operational 

signal processing technique has been developed to separate multimodal weather signal statistics, although higher 

order statistics and spectral fatness have been successfully used in identifying tornadic spectral signatures [27]. 

Clearly, such an undertaking would beneft the weather radar community, but this task is beyond the scope of 

this work. Instead, we concentrate on the estimates from the bulk of weather signals that have unimodal Gaussian 

spectra. 

The formulation of the GMLE is done in a similar manner as in [14] but with the expanded meaning of “multi-lag” 

to include previous work with “pulse-pair” or “covariance” estimators. This framework will allow us to examine a 

large space of spectral-moment and polarimetric-variable estimators for possible inclusion in updates to the WSR-

88D estimators. It is well know that these estimators are dependent on the signal statistics [8, 28]. For uncorrelated 

signals (i.e., signals with wide spectrum width compared to the Nyquist velocity), all the signal information is 

contained within the frst couple of autocorrelation lags; however, as the signal becomes correlated within the 

sample space more information is conveyed at higher autocorrelation lags. Because of this behavior, researchers 

have proposed combining these estimators to create hybrid estimators with the optimal characteristics from the 

individual estimators [17, 29]. Although this will be our end goal, we will leave that effort for future work. For 

now, we want to know if there are any other estimators worth using in a hybrid approach. 

For polarimetric weather radars, the expected autocorrelation (Rh,v ) and cross-correlation (Chv) functions (here-

after ACF and CCF, respectfully) of received weather returns have Gaussian power spectral densities [30, 31], 

Rh,v (mT ) = � � (1)jπmv̄ 
Sh,vρh,v (mT ) exp − + Nh,vδm,0 

va 

Chv (mT ) = � �p (2)jπmv̄ 
ShSv ρhvρh,v (mT ) exp − + jϕdp

va 

where m is the lag, T is the pulse repetition time, S is the signal power, ρh,v is the correlation coeffcient (equal to 

1 for m = 0 and reducing as m increases) of the respective polarization channel (subscript h for horizontal or v for 
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√ 
vertical) or cross-channel (subscript hv), j = −1, v is the mean radial velocity, va the Nyquist velocity, N the 

system noise power, δ is the Kronecker delta (1 when m = 0 and 0 otherwise), and ϕDP is the differential phase. From 

(1) and (2), estimates of meteorological parameters such as refectivity (Zh), radial velocity (vr), spectrum width 

(σv), differential refectivity ZDR, differential phase (ϕDP), and cross-correlation coeffcient (ρhv) can be extracted. 

For example on the WSR-88D (which uses the simultaneous transmit and receive mode), the typical estimators 

of power (uncalibrated refectivity, herein referred to simply as refectivity), velocity, spectrum width, differential 

refectivity, differential phase, and cross-correlation coeffcient can be extracted from (1) and (2) as: 

ˆ  ˆ  − ˆ Sh,v = Rh,v (0) Nh,v , (3) 

� �
ˆ ˆ Zh,v = 10log10 Sh,v (4) 

h iv
 a  ˆv̂r = arg Rh (T ) , (5)
π 

 √ 1/2 
ˆva 2    S� h 

σ̂v = ln �  � � , (6) 
π �R̂h (T )�  ! 

Ŝˆ h
ZDR = 10log10 , (7)

Ŝv 

ϕdp = arg [Chv (0)] , and (8) 

|Chv (0)|
ρhv = p , for m = {0, 1} . (9) 

ˆ ˆShSv 

The vr in (5) and ϕDP in (8) use the arguments of the ACF and CCF respectively and multi-lag estimates require 

unwrapping the phases of the higher lags as suggested by ([14, 28, 32]). For our purposes, it can be seen that 

the estimators for Zh, σv, ZDR, and ρhv in (4), (6), (7), and (9) use the magnitude of the ACF. To use the lag-0 

autocorrelation an accurate estimate of system noise power, ˆ Nh,v is needed. Thus, when system noise power is 

inaccurately measured or unavailable, higher-lag estimators, m > 0 in (1), that do not require noise estimates can 

be used (e.g., [13] and many others). In addition, and to further reduce uncertainty in the estimates, multi-lag 

estimators have been suggested [14]. In systems like the WSR-88D that provide valid system noise estimates [18], 

no multi-lag estimators have been suggested that include the use of the lag-0 estimates. Thus, we generalized the 

least-square estimators based on the ft of a Gaussian model to include lag-0 autocorrelation and cross-correlation 

estimates and improve multi-lag estimators of the spectral-moment and polarimetric variables [17]. 

In this article, we introduce the GMLE for Zh, ZDR, ρhv, and σv. We derive the GMLE for all lag estimators and 

provide closed form solutions for the lag-0 estimators in section II. We assess the performance with simulations of 

the derived lag-0 estimators for lags up to lag-3 of the ACF and CCF in section III. Finally, section IV summarizes 

our fndings and future plans. 
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II. THE GENERALIZED MULTI-LAG ESTIMATORS (GMLE) 

Parameters for multi-lag radar-variable estimators based on linear least-squares estimators of the autocorrelation 

or cross-correlation can be realized by minimizing the residuals of the squared distance between the expected 

and the observed autocorrelation or cross-correlation values. For the autocorrelation function, a Gaussian-shaped 

function can be expected [30] (Eq. 6.5): h i 
ρ (mT ) = exp −8(πσvmT /λ) 2 (10) 

The natural log of a Gaussian function is a parabolic function, which we can use to simplify the ftting process. 

Thus, the frst step toward a generalized least squares Gaussian ft for higher lags is to take the natural log of 

autocorrelation: 

ym = h,v   ln 2 2 [|R  2 2
 (mT )−Nh,vδm,0|] = am T + b − ak T (11) 

where a =  −8(πσv /λ)
2, b = ln[ρ (kT ) Sh,v], and k is the lag-number of the correlation coeffcient of interest, 

which form the merit function: X � �
  

� �  
 

2
F (a, b) = a m 2 − k2 T 2 + b − ŷm (12) 

m∈X 

where X ⊂ N0 and N0 is the set of nonnegative integers {0, 1, 2, . . . }. The sum of the residuals is minimized 

when the derivatives with respect to each parameter, a and b are zero. We defne a similar relationship for the 

cross-correlation function and solve for c and d over the subset W of all integers Z, 

 z = ln [|C (nT )|] = cn 2T 2 + d − ck2 2
n hv T  (13) 

√ 
where c = −8(πσv /λ)

2 and d = ln[ρ (kT ) Shvρhv], Shv = ShSv , and k is the lag-number of the correlation 

coeffcient of interest and form the merit function: X � � � �2    G(c, d) = c n 2 − k2 T 2 + d − ẑn . (14) 
n∈W 

Solutions of a, b, c, and d in (12) and (14) lead to different estimators used in polarimetric weather radars and can 

be found for different subsets of m and n, and for different lags of k. Hereafter, we use the following terminology: 

lag-0 estimators when k = 0, lag-1 estimators when k = 1, lag-2 estimators when k = 2, etc. For example, [14] 

used m = {1, ...,M}, n = {-M ,..., M} to create a set of multi-lag estimators for k = 0; whereas, [13] formed the 

lag-1 ρhv estimator with k = 1. 

The following expressions present the GMLE for signal power, spectrum width, differential refectivity, and 

cross-correlation coeffcient as a function of a, b, c, and d. 

Ŝh,v = exp (b) /ρ (kT ) (15) 

√ 
λ −2a 

σ̂h,v = (16) 
4π 

10 
ẐDR = [b

ln (10) h − bv ] (17) 
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� �
bh + bv

ρ̂hv = exp d − (18)
2 

Next, we derive the GMLE and provide closed-form derivations for all lag-0 estimators (i.e., k = 0) with sequential 

sets of m starting at 0 or 1. 

A. Derivation Of the GMLE 

1) ACF: With X ⊂ N0 and x = |X| (i.e., cardinal or number of elements in X). Using the least squares ft, the 

merit function (12) with m ∈ X reaches its minimum when the partial derivatives with respect to a and b are zero: 

∂F (a, b) X
= 2aT 4 m4  − . . . 

∂a 
m∈X X X

. . .  − 4ak2T 4 m2  + 2bT 2 m2  − . . . 
m∈X m∈X X (19) 

. . . −  2T 2 m2  ŷm + 2xak
4T 4 − . . . 

m∈X X 
. . −  2xbk2  . T 2 + 2k2T 2 ŷm = 0 

m∈X 

and
∂F (a, b) X

= 2aT 2 m2  − . . . 
∂b 

m∈X X (20)
. . . −  2xak2T 2 + 2xb − 2 ŷm = 0. 

m∈X 

Solving for b in (19) and (20):  P  
m ŷm − aT 2 P2 m4 + . . .  m∈X P m∈X  . . . + 2ak2T 2 m2  − xak4T 2 − . . .   m∈X P  

. . . − k2 ŷm 
m∈X (21)

b = � �P 
m2 − xk2 P m∈X P 

ŷ − aT 2 m2 + xak2m T 2
m∈X m∈X 

= . 
x 

Solving for a in (21) yields P
m 2 P P

ŷ m2 
m − x ŷm

m∈X"� m∈X
a = � m∈X # . P 2 P (22)

T 2 m2 − x m4 

m∈X m∈X 

Inserting (22) into (21) and simplifying  � �  P
m2   xk2 P

m 2 − ŷm +  . . .  m∈� X m∈X �  P P P  
. . . + k2 m2 − m4 ŷm (23) 

b = � m∈X � m∈X m∈X
 . P 2 P 

m2 − x m4 

m∈X m∈X 
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2) CCF: Let W ⊂ Z and w = |W |; then, the least squares ft for the merit function for the CCF (14) with 

n ∈ W reaches its minimum when the partial derivatives with respect to c and d are zero. Both c and d have 

similar forms as (22) and (23); however, we are only concerned with d  � � P P 
n2 − wk2 n2 ẑn + . . .  n∈�W n∈W �  P P P  

. . . + k2 n2 4 − n ẑn (24) 
  � n∈W n∈W n∈W

d = �2 . P P 
n2 − w n4 

n∈W m∈W 

B. Lag-0 Estimators 

Closed form solutions for lag-0 estimators (i.e., k = 0) of (22) and (23) with sequential sets of X when the frst 

term is 0 or 1 can be obtained with the use of Faulhaber’s formula for the nd 2 and th 4 power sums XM X M
  M (M + 1) (2M + 1) 

m 2 = m 2 = and 
6 

m=0 m=1 XM X M
4 4 (25)m = m = . . . 

m=0 m=1 � � 
M (M + 1) (2M + 1) 3M2 + 3M − 1 

· · · = . 
30 

Letting X = {0, 1, . . . ,M}, x = (M + 1) and inserting (25) into (22) and (23) yields PM � � 
30 6m2 − M (2M + 1) ŷm 

m=0 a = (26)
T 2M (M + 1) (2M + 1) (M + 2) (8M − 3) 

and PM � 	
6 3M2 + 3M − 1 − 5m2 ŷm 
m=0b = . (27)
(M + 1) (M + 2) (8M − 3) 

The estimates of a and b in (26) and (27) result when including the lag-0 ACF estimate; however, if X = {1, 

. . . , M} in the summations in (22) and (23) (i.e., excluding the lag-0 autocorrelation estimate1) the estimates of a 

and b become (28) and (29) which are the same as proposed by Lei et al. [14, eq. (5a) and (5b)]: P M � �
30 6m2 − (M + 1) (2M + 1) ŷm 

m=1 aL = (28)
T 2M (M − 1) (M + 1) (2M + 1) (8M + 11) 

and PM � � 
6 3M2 + 3M − 1 − 5m2 ŷm 

 m=1bL = . (29)
M (M − 1) (8M + 11) 

More solutions for lag-0 estimators can be obtained for a and b in (22) and (23) by deriving nd 2 and th 4 power 

sums for all terms in X (i.e., excluding missing terms as in the derivation of (28) and (29)). A summary of these 

lag-0 estimators for all sets of 2 or more elements in the set {0, 1, 2, 3} (i.e., using lag-0 through lag-3 of the ACF) 

derived from (22) and (23) are shown in table I. 
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TABLE I 

THE LAG-0 ESTIMATE PARAMETERS FOR 2, 3, AND 4-ELEMENT SUBSETS 

OF m = {0, 1, 2, 3} DERIVED FROM (12) TO CREATE ESTIMATORS IN (15), 

(16), (17), AND (18). 

m aT 2 b 

1 {0, 1} −ŷ0 + ŷ1 ŷ0 

2 {0, 1, 2} −5ŷ0 −2ŷ1+7ŷ2 
26 

17ŷ0+12ŷ1−3ŷ2 
26 

{0, 2} −ŷ0+ŷ2 
4 ŷ0 

1,3 {1, 2} −ŷ1+ŷ2 
3 

4ŷ1−ŷ2 
3 

{0, 1, 2, 3} −7ŷ0−5ŷ1+ŷ2+11ŷ3) 
98 

7ŷ0+6ŷ1+3ŷ2−2ŷ3 
14 

{0, 1, 3} −10ŷ0 −7ŷ1+17ŷ3 
146 

41ŷ0+36ŷ1−4ŷ3 
73 

{0, 2, 3} −13ŷ0−ŷ2+14ŷ3 
122 

97ŷ0+45ŷ2 −20ŷ3 
122 

4 {1, 2, 3} −11ŷ1 −2ŷ2+13ŷ3 
98 

6ŷ1+3ŷ2−2ŷ3 
7 

{0, 3} −ŷ0+ŷ3 
9 ŷ0 

{1, 3} −ŷ1+ŷ3 
8 

9ŷ1−ŷ3 
8 

{2, 3} −ŷ2+ŷ3 
5 

9ŷ2−4ŷ3 
5 

1 cf., [30]. 
2 cf., [29, for σv]. 
3 cf., [14, for M = 2]. 
4 cf., [14, for M = 3]. 

Closed form solutions for lag-0 estimators of d in (24) are needed to complement those for b in (27) and (29) 

1Excluding lag-0 reduces the number of elements x to M on right-hand side of (22) and (23), 
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to obtain ρ̂hv . From (25) we derive: X M
2 M (M + 1) (2M + 1) 

m = and 
3 

m=−M X M
4 (30)m = . . . 

m=−M � � 
M (M + 1) (2M + 1) 3M2 + 3M − 1 

. . . = . 
15 

Letting W = {−M, . . . , M}, w = (2M + 1) and inserting (30) in (24) results in (31) for d when using (27) 

(i.e., using lag-0 ACF) or (29) (when not using lag-0 ACF) for b to estimate lag-0 estimators of ρhv in (18).2 

PM �� � 	
3 3M2 + 3M − 1 − 5n2 zn 
n=−M

d = . (31)
(2M − 1) (2M + 1) (2M + 3) 

III. PERFORMANCE OF THE GMLE 

To understand the performance of the GMLE, we need to investigate their statistical properties as a function 

of SNR, σv, ZDR, ρhv. There are three commonly used approaches to quantify statistical biases and standard 

deviations [13]; 1) using the probability distributions of estimates to obtain frst and second order moments, 2) 

using perturbation analysis [30], and 3) using signal simulations over a large number of realizations. Certain 

trade-offs of these approaches must be considered when deciding the most suitable for the desired analysis. For 1), 

although the distributions of Zh, σv, ZDR, and ρhv estimates are known for independent samples [33], weather signal 

samples are generally highly correlated (except in very wide spectrum width scenarios), this limits the usefulness 

of this approach for the GMLE performance evaluation. Especially since the goal is to evaluate the GMLE in a 

large parameter space, and considering that GMLE’s are expected to outperform conventional estimators especially 

at narrow spectrum width (i.e., highly correlated samples). Several results regarding weather signal statistics have 

been obtained with 2) [30, 31], and have proven to work well in cases with a relatively large number of samples 

(usually the case with weather radar scans). However, given the number of lag combinations possible and the 

complexity of the GMLE’s (eqs. 19 to 31 and TABLE I), using 2) would require extensive derivations (for each 

estimator). Nevertheless, we provide a mathematical formulation for the perturbation analysis in the Appendix, 

which can be used to derive theoretical bounds for the bias and standard deviation of the GMLE. Lastly, 3) has 

been used extensively for evaluating the performance of estimators using established time-series I/Q simulation 

methods [34–36]. Although this approach can be computationally expensive, it provides fexibility to simulate a 

wide range of signal parameters in a controlled and systematic way. Therefore, we use a Monte-Carlo simulation 

scheme to produce weather-like time-series I/Q simulations [35] to systematically quantify the bias and standard 

deviation of the proposed estimators in a large space of signal conditions (similar to [15]). For these simulations, 

2Although not discussed here, it is easy to verify that the lag-1 ρ̂hv [13, (9b) instead of (9a) in (10)] is obtained from (18) when k = 1, 

X ≡ {0, 1} in (23) and W ≡ {−1, 0, 1} in (24). 
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Fig. 1. Simulation results showing probability density functions of true vs. estimated SNRs for different lags were produced with 5,000 

realizations and with system parameters of λ = 10.7 cm (wavelength), pulse repetition time (PRT) = 3,120 µs, dwell time = 50 ms (defned as 

the PRT multiplied by the number of samples), vr = 0 m s−1 , and σv = 4 m s−1 . These parameters represent benchmark conditions typically 

used to assess the performance of estimators for the Surveillance mode (i.e., unambiguous range detection) used in the WSR-88D. 

we assume a well calibrated and balanced system (i.e., all system biases are zero and the noise is the same in both 

channels). 

Simulation results presented in Figs. 1 – 4 were produced with 5,000 realizations and with system parameters 

of λ = 10.7 cm (wavelength), pulse repetition time (PRT) = 3,120 µs, dwell time = 50 ms (defned as the PRT 

multiplied by the number of samples), and vr = 0 m s−1 . For SNR analysis in Fig. 1, σv = 4 m s−1; whereas 

for ZDR and ρhv analysis in Figs. 2 – 3, σv = 2 m s−1 with SNR in the horizontal channel set to 20 dB. These 

parameters represent benchmark conditions typically used to assess the performance of estimators used for the 

Surveillance mode (i.e., unambiguous range detection) in the WSR-88D. Additionally, we show ρhv analysis for 

reduced benchmark conditions of SNR = 5 dB and σv = 1 m s−1 in Fig. 4. 

Estimates of refectivity Zh,v (4) is derived from the power refected back from precipitation to the weather 

radar [30, 31, 37]. The ACF is used to extract the noise-free power measurement Ŝh,v (3). Since accurate noise 

estimates N̂h,v have a direct impact on the accuracy of Ẑh,v , Ŝh,v have been suggested that avoid the ACF at 
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lag-0 when noise estimation is unattainable; still, we will examine the performance of all Sh,v-estimators listed in 

table I. Fig. 1 shows the probability density of estimated signal-to-noise ratio [SNR, 10 log(Sh,v/Nh,v)] for each 

selected estimator, with m = {0} (i.e., the conventional estimator), {0, 1}, {1, 2}, {0, 1, 2}, {1, 2, 3}, and {0, 1, 2, 3}. 

The color scale, shown at the top, presents the probability density (ranging from 0 to 0.3) for the estimates as a 

function of true SNR. The red dashed line is the estimate mean of SNR from 0 to 20 dB and the white line shows 

unbiased SNR. The upper left panel is the conventional estimator used in most weather radar systems. This is also 

the solution to the {0,1}-estimator (the bottom left panel, see table I). Here, it is obvious that the other estimators 

are biased with those using lag-0 (panels D, E, and F) having less bias than those not using it (panels B and C). 

This indicates that estimators using the lag-0 autocorrelation with noise compensation have lower bias and lower 

variance. Although not shown, the bias and variance of the GMLE improve as the σv decreases. It would appear 

from our analysis and the representative images shown that one would do better by obtaining an accurate noise 

estimate and using the noise-compensated Ŝh,v ; furthermore, additional lags do not appear to improve Ŝh,v . 

Fig. 2. Similar to Fig. 1, but for ZDR estimators for different lags and with σv = 2 m s−1 , ZDR = 2 dB, and ρhv = 0.99. 

The differential refectivity ZDR is the logarithmic ratio of Zh to Zv (7) and helps to characterize microphysical 
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precipitation-states [37]. From the performance of the estimators of Sh,v shown in Fig. 1, one might suspect that 

Ẑ 
DR from higher lags and without noise compensation would be similarly biased and highly variant as those for 

Ŝh,v . However, this is not the case as we will soon see. Fig. 2 shows the probability density of ẐDR for each 

selected estimator shown in Fig. 1. For this simulation, σv = 2 m s−1 , ZDR = 2 dB, and ρhv = 0.99. The color 

scale, shown at the top, shows the probability density for the estimates (0 – 0.3) as a function of true SNR. The 

upper left panel is the conventional estimator used in most weather radar systems and is also the solution to the 

{0,1}-estimator for ZDR in the bottom left panel (see table I). Unlike the estimators for Sh,v , the ZDR-estimators 

shown are unbiased. That is, both Ŝh and Ŝ 
v estimates are biased in a similar manner but are unbiased relative to 

each other. However, variance of the ZDR-estimators increase as the signal decreases toward noise (i.e., toward an 

SNR of 0 dB). Additionally, those ZDR-estimators not using the lag-0 ACF have more variance (e.g., compare panel 

B to panel E and panel C to panel F). Furthermore, comparing panels D – F a slight decrease in variance at low 

SNR for estimators using higher lags is observed with the {0,1,2,3}-estimator (panel F) having the lowest variance 

near 0 dB SNR. Although not shown, the variance of the estimators improves as the σv decreases; degrades as ρhv 

decreases; and is unaffected by ZDR. 

The cross-correlation coeffcient ρhv (unitless) provides a measure of the consistency in both amplitude and 

phase between the horizontal and vertical polarization channels. Spherical particles of precipitation have values 

near one, while precipitation with dissimilar back scatter polarization properties (i.e., type, shape, or orientation) 

reduces the ρhv toward zero [38]. Useful ranges for precipitation of ρhv are between 0.8 to 1. The performance 

of the ρhv-estimators is important to properly characterize the precipitation. Fig. 3 shows the probability density 

of estimated ρhv for each selected estimator shown in Fig. 1. For this simulation, SNR = 20 dB, σv = 2 m s−1 , 

and ZDR = 0 dB. The color scale, shown at the top, shows the probability density for the estimates (0 – 0.3) as 

a function of true ρhv. The red dashed line is the estimate mean for each ρhv from 0.8 to 1 with the white line 

showing unbiased ρhv. The upper left panel is the conventional estimator used in most weather radar systems and is 

also the solution to the {0,1}-estimator for ρhv in the bottom left panel (see table I). The ρhv-estimators are biased 

for estimators using lag-3, but improve as σv increases. Although not shown, the variance of the estimators improve 

as the σv decreases, degrades as SNR decreases; and is unaffected by ZDR. Unlike the estimators for SNR and 

ZDR, higher-lag ρhv estimators perform better for lower SNR and narrower σv than the conventional ρhv estimator. 

As an example, lowering the SNR to 5 dB and σv to 1 m s−1 shows (see Fig. 4) that variance increases for all the 

estimators as compared to WSR-88D benchmark using an SNR = 20 dB and σv = 2 m s−1 (see Fig. 3); however, 

the use of higher-lag ρhv estimators such as in panels E and F perform slightly better than the conventional ρhv 

estimator (panel A) as seen in Fig. 4. 

The spectrum width σv is a measure of the distribution of radial velocities from targets within the radar resolution 

volume [30, 31]. It can be derived from the 2nd central spectral moment, but under the assumption of a Gaussian 

spectrum most modern weather radars use the ACF to derive σv [8]. Here, we will show comparisons of the σv-

estimators that use the ACF (see table I). Fig. 5 shows the probability density of the σ̂vn (σ̂v/2va) for each of 

the selected estimators shown in table I. For the simulations in Fig. 5 – 7, 10,000 realizations were created with 

system parameters of λ = 10.7 cm, PRT = 986 µs, dwell time = 50 ms, velocity = 0 m s−1 , and SNR = 10 dB. 
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Fig. 3. Similar to Fig. 1, but for ρhv estimators, and for different lags with SNR = 20 dB and σv = 2 m s−1 . 

These parameters represent benchmark conditions typically used to assess the performance of estimators used for 

the Doppler mode (i.e., extended unambiguous velocity recovery) in the WSR-88D. 

The color scale, shown at the top, shows the probability density (typical values from 0 to 1) for the estimates (0 – 

0.1) as a function of true σv. The white line shows unbiased σvn from 0 to 0.2. The individual σv-estimators (panels 

B – L) have known errors of estimates; thus, hybrid estimators exploit trade offs between the individual estimators 

by choosing ones that best ft the given signal characteristics to improved overall performance. In panel A, hybrid 

σv-estimator selects between estimators in panels B, E and G [29].The variance of the σv-estimators improve as 

the SNR increases; still, reduced variance of these estimators can be realized by using matched autocorrelations 

[39]. Warde and Torres quantifed these performance improvements for the estimators shown in panels B – D [40]. 

Fig. 6 panels B – D show the estimators from Fig. 5 panels B – D when matched autocorrelations (MA) are 

incorporated. These estimators produce a meaningless value when the magnitude of the numerator is smaller than 

the magnitude in the denominator. Using this fact, they proposed a simple hybrid estimator [39] using the MA 

estimators as shown in panel A of Fig. 6. In this simple approach, the estimator that has the best wide spectrum 
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Fig. 4. Similar to 3, but for SNR = 5 dB and σv = 1 m s−1 

width performance is used, panel B, as long as it does not provide a meaningless value, which is more likely as the 

spectrum width becomes narrower. If a meaningless value occurs, the next best “wide” spectrum width estimator, 

panel C is selected. Lastly, if the estimator in panel C produces a meaningless value, the estimator from panel 

D is chosen. The simple hybrid σv estimator shows marked improvement over the hybrid σv estimator in Fig. 5; 

nevertheless, the simple hybrid estimator does not produce the lowest errors of estimates as seen by comparing the 

higher probability of (lighter blue) narrow spectrum width estimates in panels C and D with the lower probability 

of (darker blue) narrow σv estimates in panel A of Fig. 6. Accordingly, Warde and Schvartzman [17] suggested 

selecting between estimators based on the statistical characteristics of the estimators to derive lookup tables (LUTs), 

which are then used to determine the estimator that results in the lowest bias B and standard deviation SD of 

estimates under specifc conditions. In their work, they proposed using a weighted mean squared error (WMSE), 

(αB2 + βSD2)/(α + β) with α = 3 and β = 1, to create the LUTs. Similarly, Fig. 7 shows the same MA σv 

estimators in panels B – D with the hybrid estimator using the WMSE suggested by Warde and Schvartzman [17]. 

Here a clear improvement in narrow σv is seen when comparing Fig. 6 panel A to those in Fig. 7 panel A. 
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Fig. 5. Probability density functions of the σ̂vn (σ̂v /2va) for each of the selected estimators in table I are shown in panels B – I. Panel A 

shows the performance of the hybrid σv-estimator from [29]. Here, 10,000 realizations were created with system parameters of λ = 10.7 cm, 

PRT = 986 µs, dwell time = 50 ms, velocity = 0 m s−1 , and SNR = 10 dB. 

IV. CONCLUSION 

In this work, we formulated the Generalized Multi-Lag Estimators (GMLE) for the estimates of Zh, σv, ZDR, 

and ρhv. We compared the GMLE estimators with those estimators used in modern weather radars. We showed in 

section II that the use of the lag-0 in the formulation of estimators improved the estimates which suggests that it 

would be better to obtain good noise estimates than to avoid the use the lag-0 ACF. This was most obvious in 

the Zh-estimators where other estimators produced increased bias and variance of the Ẑh when not using the lag-0 

ACF. For the other GMLE estimators (i.e., σv, ZDR, and ρhv), at times, the use of higher ACF and CCF lags also 

improved the estimates leading to some researchers creating hybrid-estimators (i.e., combining multiple estimators) 

to improve the overall quality of the estimates. In the future, we plan to create hybrid-GMLE estimators based on 
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Fig. 6. Estimated probability density functions of σ̂vn. Panel A shows the performance of the hybrid σv-estimator from [39, 40], while panels 

B – D show the σv estimators when matched autocorrelations (MA) are incorporated. 

Fig. 7. Similar to 6. The MA σv estimators in panels B – D but combining the MA σv estimators with the weighted MSE estimator suggested 

by Warde and Schvartzman [17] for the hybrid estimator in panel A. 

the results from section II. 
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� � ˆ � �α �P ∂α �
T( ˆ∆Y )ˆ ˆ ˆ ˆT ∆Y =

X 
X  ∆  ∆α  YX +Rn YX !� � |α|≤nP   

β ˆ ˆ � �  � � (32)
∂ (  ∆ZW ) β

ˆ ˆ  
S ˆ  ˆS ∆ZW = ∆ ∆! ZW +Rn ZW β

|β|≤n � � 
where ˆ  ˆ − , ˆ ˆ ˆ ˆ ∆YX = YX YX ∆ZW = ZW −ZW , Rn is the remainder. Extracting the frst term in T S and choosing 

n large enough to make the remainder insignifcant, the perturbations (difference between the estimator and the 

true value) is approximated as, � � � � � � X α ˆ ˆ ∂ T ∆YX � �α 
 ˆ  ̂  ˆ ˆ −   ≈ ˆδT ∆Y = T YX T (YX ) ∆YX

α! 
|α| ⩽ n 

|α| = 0 � � (33) � � � � X ∂β ˆ ˆ S ∆Z
 

W � �β 
ˆ ˆ ˆ ˆ ˆ δS ∆ZW = S ZW − S (ZW ) ≈ ∆ZW

β! 
|β| ⩽ n 

|β| = 0 

Then, the bias B and variance V are calculated as the ensemble average of the perturbations, h i D E h i �h i � 2 
ˆ ˆB T = ˆ δT and V T = ˆ δT and h i D E h i �h i � (34)

2 
ˆB S = ˆ ˆδS and V S = ˆ δS . 

̸

̸
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